irreducible$40871$ - определение. Что такое irreducible$40871$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое irreducible$40871$ - определение

ONE CASE WHEN SOLVING A CUBIC EQUATION
Irreducible Case; Irreducible Case (cubic); Irreducible cubic

Casus irreducibilis         
In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e.
P2-irreducible manifold         
3-MANIFOLD THAT IS IRREDUCIBLE AND CONTAINS NO 2-SIDED REAL PROJECTIVE PLANE
P-irreducible; P²-irreducible; P2-irreducible
In mathematics, a P2-irreducible manifold is a 3-manifold that is irreducible and contains no 2-sided \mathbb RP^2 (real projective plane). An orientable manifold is P2-irreducible if and only if it is irreducible..
Irreducible component         
CONCEPT, USED TO MAKE FORMAL THE IDEA THAT A SET SUCH AS DEFINED BY THE EQUATION XY=0 IS THE UNION OF THE TWO LINES X=0 AND Y=0
Irreducible variety; Irreducible algebraic set; Reducible variety
In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property.

Википедия

Casus irreducibilis

In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.